In this page, you can find the complete solutions of the second exercise of
Logic, Sets, and Real Number System chapter from Basic Mathematics Grade XI
book published and distributed by Sukunda Pustak Bhawan.
In the above-mentioned book, logic, sets, and real number system is the 1st
chapter and has four exercises only. Out of which, this is the solution of
the second exercise.
Check: Basic Mathematics Grade 11 (Sukunda Publication) Guide:
Grade 11 Basic Mathematics by Sukunda Pustak Vawan Notes and Solutions | Nepal
Related Exercises:
Disclaimer:
Answers mentioned here are not solved by teachers. These are the solutions
written by a student of Grade 11. Answers are all correct. However, the
language or process of solving the questions might be informal and in
examinations, you might have to add little more language and show more
calculations than what has been done here. So, we highly encourage you to
view these solutions as guide rather than just copying everything mentioned
here. Few questions have been typed while most of them have been updated as
pictures.
Sets Exercises
1. If U = {1,2,3,4,...,9,10}, A={1,2,3,4}, B = {3,5,7,8} and C={1,2,7,8}, find
$a) A \cup B$
$b) A \cap C$
$c) (A-B) \cap C$
$d) \overline{A-C}$
$e) \overline{B} \cup \overline{C}$
$f) (A \cup B) - C$
Solution:
Given,
$\text{U} = {1,2,3,4,5,6,7,8,9,10}$
$\text{A} = {1,2,3,4}$
$\text{B} = {3,5,7,8}$
$\text{C} = {1,2,7,8}$
Now,
$a) A \cup B$
= ${1,2,3,4} \cup {3,5,7,8}$
$= {1,2,3,4,5,7,8}$
$b) A \cap C$ = ${1,2,3,4} \cap {1,2,7,8}$
$= {1,2}$
$c) (A-B) \cap C$
= $[{1,2,3,4} - {3,5,7,8}] \cap {1,2,7,8}$
$= {1,2,4} \cap {1,2,7,8}$
$= {1,2}$
$d) \overline{A \cup C}$
= $\overline{ {1,2,3,4} \cup {1,2,7,8} }$
$= \overline{ {1,2,3,4,7,8} }$
$= U - {1,2,3,4,7,8}$
$= {5,6,9,10}$
$e) \overline{B} \cup \overline{C}$
$= [ U - B ] \cup [U - C]$
$= [ {1,2,3,4,5,6,7,8,9,10} - {3,5,7,8} ] \cup [{1,2,3,4,5,6,7,8,9,10} -
{1,2,7,8}]$
$= {1,2,4,6,9,10} \cup {3,4,5,6,9,10}$
$= {1,2,3,4,5,6,9,10}$
$f) (A \cup B) - C$
$= [{1,2,3,4} \cup {3,5,7,8} ] - {1,2,7,8}$
$= {1,2,3,4,5,7,8} - {1,2,7,8}$
$= {3,4,5}$
2. Let U = {a,b,c,d,e,f,g,h,i,j,k}, A = {b,c,d,e}, B = {d,e,f,g,h,i}, C = {a,e,i,o,u}, D = {b,d,j,k}
Solution:
Here,
Here,
$\text{U} = {a,b,c,d,e,f,g,h,i,j,k}$
$\text{A} = {b,c,d,e}$
$\text{B} = {d,e,f,g,h,i}$
$\text{C} = {a,e,i,o,u}$
$\text{D} = {b,d,j,k}$
Perform the following indicated operations
a) $A \cup B$
$\implies {b,c,d,e} \cup {d,e,f,g,h,i}$
$\implies {b,c,d,e,f,g,h,i}$
b) $A \cap C$
$\implies {b,c,d,e} \cap {a,e,i,o,u}$
$\implies {e}$
c) $A - B$
$\implies {b,c,d,e} - {d,e,f,g,h,i}$
$\implies {b,c}$
d) $A - C$
$\implies {b,c,d,e} - {a,e,i,o,u}$
$\implies {b,c,d}
e) $(A-C) \cap C$
$\implies [ {b,c,d,e} - {a,e,i,o,u} ] \cap C$
$\implies {b,c,d} \cap {a,e,i,o,u}$
$\phi$
f) $A \triangle D$
$\implies (A-D) \cup (D-A)$
$\implies [ {b,c,d,e} - {b,d,j,k} ] \cup [ {b,d,j,k} - {b,c,d,e}]$
$\implies {c,e} \cup {j,k}$
$\implies {c,e,j,k}$
g) $(A \cup B) - C$
$\implies [ {b,c,d,e} \cup { d,e,f,g,h,i} ] - C$
$\implies {b,c,d,e,f,g,h,i} - {a,e,i,o,u}$
$\implies {b,c,d,f,g,h}$
h) $A \cap \overline{B}$
$\implies A \cap [ U - B]$
$\implies A \cap [ {a,b,c,d,e,f,g,h,i,j,k} - {d,e,f,g,h,i}]$
$\implies {b,c,d,e} \cap {a,b,c,j,k}$
$\implies {b,c}$
i) $\overline{A-B}$
$\implies U - (A-B)$
$\implies U - [ {b,c,d,e} - {d,e,f,g,h,i} ]$
$\implies {a,b,c,d,e,f,g,h,i,j,k} - {b,c}$
$\implies {a,d,e,f,g,h,i,j,k}$
3 a) Given the sets,
$\text{U} = {x:x is a positive integer less than 12}, \text{A} = {3,5,7,9}$, $B= {1,2,3,8,9}$, $C = {1,4,7,10}$, find $(\overline{A \cup B} ), (A-B) \cup C$, (A-C)\cap B.$
Solution:
Here,
Here,
$\text{U} = {x:x is a positive integer less than 12}$
$\implies \text{U} = {1,2,3,4,5,6,7,8,9,10,11}$
$\text{A} = {3,5,7,9}$
$\text{B} = {1,2,3,8,9}$
$\text{C} = {1,4,7,10}$
Now,
$\text{(i)} (\overline{A \cup B})$
$= U - (A \cup B)$
$= U - [{3,5,7,9} \cup {1,2,3,8,9}]$
$= {1,2,3,4,5,6,7,8,9,10,11} - {1,2,3,5,7,8,9}$
$= {4,6,10,11}$
$\text{(ii)} (A - B) \cup C$
$= [{3,5,7,9} - {1,2,3,8,9} ] \cup C$
$= {5,7} \cup {1,4,7,10}$
$= {1,4,5,7,10}$
$\text{(iii)} (A - C) \cap B$
$= [ {3,5,7,9} - {1,4,7,10} ] \cap B$
$= {3,5,9} \cap {1,2,3,8,9}$
$= {3,9}$
3 b) Given U = {x: x is a natural number upto 20}, A = {x:x $\geq}$ 6}, B = {x: x $\leq$ 8} and C = {x:10 < x <15}, find $B \cup C$, $A \cap B}$ , $A -C$, $\overline{A \cup B}$.
Solution:
Here,
Here,
$\text{U} = {x: x is a natural number upto 20}$
$implies \text{U} = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}$
$\text{A} = {x:x \geq 6$
$\implies \text{A} = {6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}$
$\text{B} = {x:x \leq 8}$
$\implies \text{B} = {1,2,3,4,5,6,7,8}$
$\text{C} = {x:10 < x< 15}$
$\implies \text{C} = {11,12,13,14}$
Now,
$\text{(i)} B \cup C$
$\implies { 1,2,3,4,5,6,7,8} \cup {11,12,13,14}$
$\implies {1,2,3,4,5,6,7,8,11,12,13,14}$
$\text{(ii)} A \cap B$
$\implies {6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} \cap {1,2,3,4,5,6,7,8}$
$\implies {6,7,8}$
$\text{(iii)} A - C$
$\implies {6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} - {11,12,13,14}$
$\implies {6,7,8,9,10,15,16,17,18,19,20}$
4 a) If A = {x: x = 2n + 1, n $leq$ 5, n $\epsilon$ N} and B = {x: x = 3n - 2, n $\leq$ 4, n $\epsilon$ N}, find A $\cup$ B, A $\cap$ B, and B $-$ A.
Solution:
Here,
For $n \leq 5 \text{and} n \epsilon N$, set A = ${3,5,7,9,11}$
For $n \leq 4 \text{and} n \epsilon N$, set B = ${1, 4,7,10}$
Now,
$(i) A \cup B$
$= {3,5,7,9,11} \cup {1,4,7,10}$
$= {1,3,4,5,7,9,10,11}$
And,
$(ii) A \cap B$
$= {3,5,7,9,11} \cap {1,4,7,10}$
$= {7}$
Also,
$(iii) B - A$
$= {1,4,7,10} - {3,5,7,9,11}$
$= {1,4,10}$
4 b) If A is the set of all multiples of 3 less than 20, B is the set of multiples of 6 less or equal to 30 and U is the set of all natural numbers, find A $\cap$ B and A $-$ B.
Solution:
According to the question,
According to the question,
$\text{A} = {3,6,9,12,15,18}$
$\text{B} = {6,12,18,24,30}$
$\text{U} = {1,2,3,4,5,6,.....}$
Now,
$(i) A \cap B$
$= {3,6,9,12,15,18} \cap {6,12,18,24,30}$
$= {6,12,18}$
And,
$(ii) A - B$
$= {3,6,9,12,15,18} - {6,12,18,24,30}$
$= {3,9,15}$
4 c) If $\text{U} = {x: -1 \leq x -2 \leq 7}, \text{A} = {x: x is a prime number} and \text{B} = {x: x is an odd number}, \text{find}$
- the set of elements which are either prime or odd.
- the set of elements which are prime as well as odd.
- the set of elements which are prime but not odd.
Solution:
According to the question,
$\text{U} = {1,2,3,4,5,6,7,8,9}$
So the sets A and B must be a subset of set U.
$\text{A} = {2,3,5,7}$ $\implies \text{Set A represents prime numbers}$
$\text{B} = {1,3,5,7,9}$ $\implies \text{Set B represents odd numbers}$
Now,
i) the set of elements which are either prime or odd $\implies A \cup B$
$= {2,3,5,7} \cup {1,3,5,7,9}$
$= {1,2,3,5,7,9}$
And,
ii) the set of elements which are prime as well as odd $\implies A \cap B$
$= {2,3,5,7} \cap {1,3,5,7,9}$
$= {3,5,7}$
Also,
iii) the set of elements which are prime but not odd $\implies A - B$
$= {2,3,5,7} - {1,3,5,7,9}$
$= {2}$
5. Let U = {a,b,c,d,e,f,g,h}, A= {a,b,c,d}, B= {c,d,e,f} and C=
{d,e,f,g,h}. Verify the following relations
$\text{a)} A \cup ( B\cap C) = (A \cup B) \cap (A \cup C)$
$\text{b)} A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
$\text{c)} \overline{A \cup B} = \overline{A} \cap \overline{B}$
$\text{d)} A - (B \cup C) = (A - B) \cap (A - C)$
Solution:
Here,
$U = {a,b,c,d,e,f,g,h}$
$A = {a,b,c,d}$
$B= {c,d,e,f}$
$C= {d,e,f,g,h}$
Now,
$\text{a)} A \cup ( B\cap C) = (A \cup B) \cap (A \cup C)$
LHS = $A \cup (B \cap C)$
$= A \cup [ {c,d,e,f} \cap {d,e,f,g,h} ]$
$= {a,b,c,d} \cup {d,e,f}$
$= {a,b,c,d,e,f}$
RHS = (A \cup B ) \cap (A \cup C)$
$= [ {a,b,c,d} \cup {c,d,e,f} ] \cap [ {a,b,c,d} \cup {d,e,f,g,h} ]$
$= {a,b,c,d,e,f} \cap {a,b,c,d,e,f,g,h}$
$= {a,b,c,d,e,f}$
Since LHS = ${a,b,c,d,e,f}$ = RHS, given relation is verified.
And,
$\text{b)} A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
LHS = $A \cap (B \cup C)$
$= A \cap [ {c,d,e,f} \cup {d,e,f,g,h} ]$
$= {a,b,c,d} \cap {c,d,e,f,g,h}$
$= {c,d}$
RHS = $(A \cap B) \cup (A \cap C)$
$= [{a,b,c,d} \cap {c,d,e,f}] \cup {a,b,c,d} \cap {d,e,f,g,h}]$
$= {c,d,} \cup {d}$
$= {c,d}$
Since LHS = ${c,d}$ = RHS, given relation is verified.
Also,
$\text{c)} \overline{A \cup B} = \overline{A} \cap \overline{B}$
LHS = $\overline{A \cup B}$
$= \overline{ {a,b,c,d} \cup {c,d,e,f} }$
$= \overline{ {a,b,c,d,e,f} }$
$= U - {a,b,c,d,e,f}$
$= {a,b,c,d,e,f,g,h} - {a,b,c,d,e,f}$
$= {g,h}$
RHS = \overline{A} \cap \overline{B}$
$= (U -A ) \cap (U - B)$
$= [{a,b,c,d,e,f,g,h} - {a,b,c,d} ] \cap [ {a,b,c,d,e,f,g,h} -
{c,d,e,f}]$
$= {e,f,g,h} \cap {a,b,g,h}$
$= {g,h}$
Since LHS = ${g,h}$ = RHS, given relation is verified.
Again,
$\text{d)} A - (B \cup C) = (A - B) \cap (A - C)$
LHS = $A - (B \cup C)$
$= A - [{c,d,e,f} \cup {d,e,f,g,h} ]$
$= {a,b,c,d} - {c,d,e,f,g,h}$
$= {a,b}$
RHS = $(A - B) \cap (A -C)$
$= [{a,b,c,d} - {c,d,e,f} ] \cap [ {a,b,c,d} - {d,e,f,g,h} ]$
$= {a,b} \cap {a,b,c}$
$= {a,b}$
Since LHS = ${a,b}$ = RHS, given relation is verified.
About the Textbook:
Name: Basic Mathematics Grade XI
Author(s): D.R. Bajracharya | R.M. Shresththa | M.B. Singh | Y.R.
Sthapit | B.C. Bajracharya
Publisher: Sukunda Pustak Bhawan (Bhotahity, Kathmandu)
Telephone: 5320379, 5353537
Price: 695 /- (2078 BS)
Buy this book: Basic Mathematics : Grade XI – Sukunda Publication
0 Comments
You can let us know your questions in the comments section as well.