Grade 11 Basic Mathematics by Sukunda Pustak Vawan Notes and Solutions | Nepal
Disclaimer:
1. A force equal to 10 N is inclined at an angle of 30 to the horizontal;
find its resolved parts in a horizontal and vertical directions.
Solution:
Let $F = 10 N$
$\theta = 30^o$
We know,
Horizontal component $F_x= F cos \theta$
$= 10 * cos 30$
$= 10 \times \dfrac{\sqrt{3}}{2}$
$= 5 \sqrt{3} N$
Vertical component $F_y = F sin \theta$
$= 10 * sin 30 $
$= 10 * \dfrac{1}{2}$
$= 5 N$
2. Resolve a force equal to 50 N into two forces making angles of 60 and 45 with it in opposite sides.
Solution:
Let the two resolved forces be A and B and their angles with the original force be denoted by $\alpha$ and $\beta$, respectively.
Then, we have,
$A = \dfrac{50 \sin \alpha}{sin( \alpha + \beta)}$
$= \dfrac{50 \sin 60^o}{\sin (60 + 45)}$
$= \dfrac{50 \times \frac{ \sqrt{3}}{2} }{ \sin 105^o}$
$= \dfrac{25 \sqrt{3}}{ \frac{ \sqrt{3} + 1}{2 \sqrt{2}}}$
$= \dfrac{25 \sqrt{3} \times 2 \sqrt{2}}{\sqrt{3} + 1}$
$= \dfrac{50 \sqrt{6} }{ \sqrt{3} + 1} \times \dfrac{ \sqrt{3} - 1}{ \sqrt{3} -1 }$
$= \dfrac{50 \sqrt{6} ( \sqrt{3} - 1)}{3 - 1}$
$= 25 (3 \sqrt{2} - \sqrt{6})$ N
And
$A = \dfrac{50 \sin \alpha}{sin( \alpha + \beta)}$
$= \dfrac{50 \sin 45^o}{\sin (60 + 45)}$
$= \dfrac{50 \times \frac{ 1}{\sqrt{2}} }{ \sin 105^o}$
$= \dfrac{25 \sqrt{2}}{ \frac{ \sqrt{3} + 1}{2 \sqrt{2}}}$
$= \dfrac{25 \sqrt{2} \times 2 \sqrt{2}}{\sqrt{3} + 1}$
$= \dfrac{50 \times 2}{\sqrt{3} + 1} \times \dfrac{\sqrt{3} - 1}{\sqrt{3} - 1}$
$= \dfrac{100 (\sqrt{3} -1)}{3 -1}$
$= 50(\sqrt{3}-1)$ N
Hence, the required forces are $25 (3 \sqrt{2} - \sqrt{6})$ N and $50 ( \sqrt{3} -1 )$ N.
3. If a force P be resolved into two forces making angles of 45 and 15 with
its direction; show that the latter force is $\dfrac{\sqrt{6}}{3} P$.
Solution:
Let the two resolved forces be respresented by A and B and their angle with the force P be $\alpha$ and $\beta$.
Then,
$A = \dfrac{P \sin \alpha}{sin(\alpha + \beta)}$
$A = \dfrac{P \sin 45^o}{sin(45+15)^o}$
$= \dfrac{P \times \dfrac{1}{\sqrt{2}}}{sin 60^o}$
$= \dfrac{P \times \dfrac{1}{\sqrt{2}}}{\dfrac{\sqrt{3}}{2}}$
$= \dfrac{P \times 2}{\sqrt{6}}$
$= \dfrac{P \times 2 }{\sqrt{6}} \times \dfrac{\sqrt{6}}{\sqrt{6}}$
$= \dfrac{P \times 2 \sqrt{6}}{6}$
$= \dfrac{\sqrt{6}}{3}P$
However, the latter force is B that makes angle $\beta$ with the given force. Just to make the answer matching with the book, we solved it accordingly.
0 Comments
You can let us know your questions in the comments section as well.