In this page, you can find the complete solutions of the exercise of Properties of Triangle chapter from Basic Mathematics Grade XI book published and distributed by Sukunda Pustak Bhawan.
Grade 11 Basic Mathematics by Sukunda Pustak Vawan Notes and Solutions | Nepal
Also Check: Functions Exercise 3 Solutions
Grade 11 Relations, Functions, and Graphs Exercise 3 Solutions | Basic Mathematics Grade XI by Sukunda Pustak Bhawan
Also Check: Chapter 8 Solutions of Triangle Complete Solutions
Grade 11 Solutions of Triangle Exercise Solutions | Basic Mathematics Grade XI by Sukunda Pustak Bhawan (scipipupil.blogspot.com)
Disclaimer:
1 a) $a (b cos C \ - \ c cos B) \ = \ b^2 \ - \ c^2$
Solution:
LHS
$= \ a(b cosC \ - \ c cosB)$
$= \ abcosC \ - \ accosB)$
Using cosine law
$= \ \dfrac{a^2 + b^2 - c^2}{2} \ - \ \dfrac{a^2 + c^2 - b^2}{2}$
$= \ \dfrac{a^2 + b^2 - c^2 -a^2 - c^2 + b^2}{2}$
$= \ \dfrac{2(b^2 \ - \ c^2)}{2}$
$= \ b^2 \ - \ c^2$
RHS
1 b) $\dfrac{cosA}{a} \ + \ \dfrac{a}{bc}$ = $\dfrac{cosB}{b} \ + \ \dfrac{b}{ca}$ = $\dfrac{cosC}{c} \ + \ \dfrac{c}{ab}$
Solution:
LHS
$= \ \dfrac{cosA}{a} \ + \ \dfrac{a}{bc}$
$= \ \dfrac{bc \ cosA + a^2}{abc}$
$= \ \dfrac{\frac{b^2 + c^2 - a^2}{2} + a^2}{abc}$
$= \ \dfrac{ b^2 + c^2 - a^2 + 2a^2}{2abc}$
$= \ \dfrac{a^2 + b^2 +c^2}{2abc}$
Similarly,
MS = $\dfrac{a^2 + b^2 + c^2}{2}$ = RHS
1c) $\dfrac{cosA}{a} \ + \ \dfrac{cosB}{b} \ + \ \dfrac{cosC}{c} \ = \ \dfrac{a^2 + b^2 + c^2}{2abc}$
Solution:
LHS
$= \ \dfrac{cosA}{a} \ + \ \dfrac{cosB}{b} \ + \ \dfrac{cosC}{c}$
$= \ \dfrac{bc cosA \ + \ ca cosB \ + \ ab cosC}{abc}$
Using cosine law
$= \ \dfrac{ (b^2 + c^2 - a^2) + (c^2 + a^2 - b^2) + (a^2 + b^2 - c^2)}{2abc}$
$= \ \dfrac{a^2 + b^2 + c^2}{2abc}$
RHS
5 a) $\dfrac{b-c}{a} cos \frac{1}{2} A \ = \ sin \frac{1}{2} (B-C)$
Solution:
LHS
$= \ \dfrac{b-c}{a} cos \frac{1}{2}A$
$= \ \dfrac{2RsinB \ - \ 2RsinC}{2RsinA} \cos \frac{1}{2} A$
$= \ \dfrac{sin B \ - \ sin C}{sinA} \cos \frac{1}{2} A$
$= \ \dfrac{ 2 \cos ( \frac{B+C}{2} ) \ . \ \sin ( \frac{B-C}{2} )}{2 \sin \frac{1}{2} A \cos \frac{1}{2} A} \ cos \frac{1}{2}A$
$= \ \dfrac{\sin \frac{1}{2} A \ . \sin \frac{B-C}{2} }{ \sin \frac{1}{2} A}$
$= \ \cos \frac{1}{2} A$
RHS
6) If $a^4 + b^4 + c^4 = 2c^2 (a^2 + b^2)$, prove that C = 45$^o$ or 135$^o$.
Solution:
Given,
$a^4 + b^4 + c^4 = 2c^2 (a^2 + b^2)$
$or, \ (a^2 + b^2)^2 - 2a^2b^2 - 2c^2(a^2 +b^2) + c^4 = 0$
$or, \ (a^2 + b^2)^2 - 2(a^2+b^2) + (c^2)^2 = 2 a^2b^2$
$or, \ (a^2 + b^2 - c^2)^2 = 2a^2b^2$
$or, \ a^2 + b^2 - c^2 = \pm \sqrt{2} ab$
Using cosine law for angle C
$or, \ 2 ab cos C = \pm \sqrt{2} ab$
$or, \sqrt{2} cos C = \pm 1$
$or, \ cos C = \pm \dfrac{1}{\sqrt{2}}$
Either
$cos C = \dfrac{1}{\sqrt{2}}$
$\implies C = 45^o$
Or
$cosC = - \dfrac{1}{\sqrt{2}}$
$\implies C = 135^o$
7) If $(a+b+c)(b+c-a) = 3bc$, show that A = 60$^o$.
Solution:
Given,
$(a + b + c)(b + c- a) = 3bc$
$or, \{ (b+c) + a \} \{(b + c) - a \} = 3bc$
$or, (b+c)^2 - a^2 = 3bc$
$or, b^2 + c^2 - a^2 + 2bc = 3bc$
Using consine law for angle A
$or, 2 bc cos A = bc$
$or, cosA = \dfrac{1}{2}$
$or, cos A = cos 60^o$
$\therefore A = 60^o$
8) If $\dfrac{1}{a+c} + \dfrac{1}{b+c} = \dfrac{3}{a+b+c}$, show that C = 60$^o$.
Solution:
Given,
$\dfrac{1}{a+c} + \dfrac{1}{b+c} = \dfrac{3}{a+b+c}$
$or, \ \dfrac{b + c + a +c}{(a+c)(b+c)} = \dfrac{3}{a+b+c}$
$or, \ (a+b+c) \{ (a+b+c) + c \} = 3 (a +c)(b+c)$
$or, \ (a+b+c)^2 + c(a+b+c) = 3 (ab + ac + bc + c^2)$
$or, \ a^2 + 2ab + b^2 + c^2 + 2ac + 2bc + ac + bc + c^2 = 3ab + 3ac + 3bc + 3c^2$
$or, \ a^2 + 2ab + b^2 + 2c^2 + 3ac + 3bc = 3ab + 3ac + 3bc +3c^2$
$or, \ a^2 + 2ab + b^2 - c^2 = 3ab$
$or, \ a^2 + b^2 - c^2 = ab$
$or, \ 2ab \cos C = ab$
$or, \ \cos C = \dfrac{ab}{2ab}$
$or, \ \cos C = \dfrac{1}{2}$
$or, \ \cos C = \cos 60^o$
$\therefore C = 60^o$
9) If the cosines of two of the angles of a triangle are proportional to the opposite sides, prove that the triangle is isosceles.
Solution:
According to the question, in any triangle ABC,
$$\dfrac{\cos B}{\cos C} = \dfrac{\text{b}}{\text{c}}$$
$$\text{or,} \dfrac{\cos B}{\cos C} = \dfrac{2R \sin B }{ 2R \sin C}$$
$$\text{or,} \dfrac{\sin C}{\cos C} = \dfrac{\sin B}{\sin C}$$
$$\text{or,} \tan C = \tan B$$
$$\therefore \ C \ = \ B$$
Hence, the given triangle is isoceles triangle.
10. If (cos A + 2 cos C): (cos A + 2 cos B) = sinB:sinC, prove that the triangle is either isosceles or right angled.
Solution:
Given,
$$\dfrac{\cos A + 2 \cos C}{\cos A + 2 \cos B} = \dfrac{\sin B}{\sin C}$$
$\text{or,} \cos A \sin C + 2 \cos C \sin C = \cos A \sin B + 2 \sin B \cos B$
$\text{or,} \cos A \sin C - \cos A \sin B = \sin 2B - \sin 2C$
$\text{or,} \cos A ( \sin C - \sin B) \ = \ 2 \cos \frac{2B + 2C}{2} \sin \frac{2B - 2C}{2}$
$\text{or,} \cos A ( 2 \cos \frac{C+B}{2} \sin \frac{C - B}{2}) \ = \ 2 \cos (B+C) \sin (B-C)$
$\text{or,} \cos A \cos \frac{B+C}{2} \sin \frac{C-B}{2} = - \cos A \sin (B-C)$
$\text{or,} \cos A \cos \frac{B+C}{2} \sin \frac{C-B}{2} = \cos A \sin (C-B)$
$\text{or,} \cos A \cos \frac{B+C}{2} \sin \frac{C-B}{2} = \cos A 2 \sin \frac{C-B}{2} \cos \frac{C-B}{2}$
$\text{or,} \cos A \cos \frac{B+C}{2} \sin \frac{C-B}{2} - 2 \cos A \sin \frac{C-B}{2} \cos \frac{C-B}{2} = 0$
$\text{or,} \cos A \sin \frac{C-B}{2} \left ( \cos \frac{B+C}{2} - 2 \frac{C-B}{2} \right ) = 0$
Either
$ \cos A = 0$
$\therefore A = 90^o$
Hence, the triangle is right angled triangle.
Or
$ \sin \frac{C-B}{2} = 0$
$\text{or,} \sin \frac{C-B}{2} = sin 0$
$\text{or,} \frac{C-B}{2} = 0$
$\text{or,} C - B = 0$
$\therefore C = B$
Hence, the triangle is isoceles triangle.
But
$\cos \frac{B+C}{2} - 2 \frac{C-B}{2} \neq 0$
11. If 2 cos A = sinB:sinC, show that the triangle is isosceles.
Solution:
Given,
$$2 \cos A = \dfrac{ \sin B}{\sin C}$$
$$\text{or,} \dfrac{b^2 + c^2 - a^2}{bc}\ = \ \dfrac{b}{c}$$
$$\text{or,} \dfrac{b^2 + c^2 - a^2}{b} \ = \ b$$
$$\text{or,} b^2 + c^2 - a^2 \ = \ b^2$$
$$\text{or,} c^2 \ = \ a^2$$
$$ c \ = \ a$$
Hence, the given triangle is isoceles triangle.
12. Prove that a^2, b^2, c^2 are in A.P. if sinA:sinC = sin(A-B):sin(B-C).
Solution:
Given,
$$\dfrac{\sin A}{\sin C} = \dfrac{\sin (A-B) }{\sin (B-C)}$$
$$\text{or,} \sin A \sin (B-C) \ = \ \sin C \sin (A-B)$$
In any triangle, A + B + C = $\pi$
$$\text{or,} \sin (B+C) \sin (B-C) \ = \ \sin(A+B) \sin (A-B)$$
$$\text{or,} \sin^2 B - \sin^2 C \ = \ \sin^2 A - \sin^2 B$$
Using Extended sine law
$$\text{or,} \dfrac{b^2}{4R^2} - \dfrac{c^2}{4R^2} \ = \ \dfrac{a^2}{4R^2} - \dfrac{b^2}{4R^2}$$
$$\text{or,} b^2 - c^2 \ = \ a^2 - b^2$$
$$\text{or,} 2b^2 \ = \ a^2 + c^2$$
$$ \therefore b^2 \ = \ \dfrac{a^2 + c^2}{2}$$
13 c) $\sin A + \sin B + \sin C = \dfrac{s}{R}$
Solution:
We know,
$$\sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2}$$
$$= 2 \sqrt{ \dfrac{(s-b)(s-c)}{bc} } \sqrt{ \dfrac{s(s-a)}{bc}}$$
$$= 2 \sqrt{ \dfrac{(s(s-a)(s-b)(s-c)}{(bc)^2}}$$
$$= \dfrac{2 \triangle}{bc}$$
Similarly,
LHS
$$\sin A + \sin B + \sin C$$
$$\dfrac{a}{2R} + \dfrac{b}{2R} + \dfrac{c}{2R}$$
$$\dfrac{1}{2R} (a+b+c)$$
$$\dfrac{1}{2R} (2s)$$
$$\dfrac{s}{R}$$
RHS
Solution:
To prove: $a \ cos B \ cos C \ + \ b \ cosC \ cosA \ + \ c \ cosA \ cos B \ = \ \dfrac{\triangle}{R}$
LHS
$= a \ cos B \ cos C \ + \ b \ cosC \ cosA \ + \ c \ cosA \ cos B$
$= cos C \ ( a cos B \ + \ b cos A ) \ + \ c \ cosA \ cos B$
$= cos C \times c \ + \ c \ cosA \ cos B$
$= c \ ( cos C \ + \ cos A \ cos B)$
$= \dfrac{c}{2} \ (2cos C \ + \ 2 cos A \ cos B)$
$= \dfrac{c}{2} \ ( 2 cos C \ + \ cos(A + B) + cos (A-B) )$
$= \dfrac{c}{2} \ ( 2 cos C \ + \ cos( \pi - C) + cos (A -B) )$
$= \dfrac{c}{2} \ (2 cos C \ - \ cos C \ + \ cos (A -B))$
$= \dfrac{c}{2} \ ( cos C \ + \ cos (A-B) )$
$= \dfrac{c}{2} \ ( cos (\pi - (A+B)) \ + \ cos (A-B))$
$= \dfrac{c}{2} \ (cos (A-B) \ - \ cos(A+B))$
$= \dfrac{c}{2} ( 2 \ sin A \ sin B)$
$= sin A \ sin B \ c$
$= \dfrac{a}{2R} \ \times \ \dfrac{b}{2R} \ \times c$
$= \dfrac{abc}{4R^2}$
$= \dfrac{abc}{4R} \ \times \ \dfrac{1}{R}$
$= \dfrac{ \triangle}{R}$
RHS
15) If a = 10, b = 8, c = 6, find s, $|traingle$, R and sin $\frac{B}{2}$.
Solution:
Given,
$a = 10$
$b = 8$
$c = 6$
$s = \dfrac{a+b+c}{2} = \dfrac{10+8+6}{2}$
$\therefore s = 12$
We know,
$\triangle = \sqrt{s(s-a)(s-b)(s-c)}$
$= \sqrt{12 ( 12 - 10)(12- 8)(12-6)}$
$= \sqrt{12 (2)(4)(6)}$
$= \sqrt{576}$
$= 24$
And,
$\triangle = \dfrac{abc}{4R}$
$\implies R = \dfrac{abc}{4 \triangle}$
$= \dfrac{10 \times 8 \times 6}{4 \times 24}$
$= \dfrac{5}$
Also,
$\sin \frac{B}{2} = \sqrt{ \dfrac{(s-a)(s-c)}{ac}}$
$= \sqrt{ \dfrac{(12-10)(12-6)}{10 \times 6}}$
$= \sqrt{ \dfrac{2 \times 6}{60}}$
$= \sqrt{ \dfrac{1}{5}}$
0 Comments
You can let us know your questions in the comments section as well.