In this page, you can find the complete solutions of the fourth exercise of Relations, Functions, and Graphs chapter from Basic Mathematics Grade XI book published and distributed by Sukunda Pustak Bhawan.
Grade 11 Basic Mathematics by Sukunda Pustak Vawan Notes and Solutions | Nepal
Disclaimer:
1. Prove that
a) $\rm \log_a(xy^3/z^2) = \log_a x \log_a y - 2 \log_a z$
Solution:
Given,
$\rm = \log_a(xy^3/z^2)$
Using the quotient rule of logarithm
$\rm = \log_a(xy^3) - \log_a z^2$
Using the product rule of logarithm
$\rm = \log_a (x) + \log_a(y^3) - \log_a z^2$
Using the power rule of logarithm
$\rm = \log_a (x) + 3 \log_a(y) - 2 \log_a(z)$
b) $\rm \log_a 2x + 3( \log_a x - \log_a y) = \log_a (2x^4/y^3)$
Solution:
Given,
$\rm = \log_a 2x + 3 ( \log_a x - \log_a y)$
$\rm = \log_a 2x + 3 \log_a \left ( x/y \right )$
$\rm = \log_a 2x + \log_a ( x/y)^3$
$\rm = \log_a 2x + \log_a (x^3/y^3)$
$\rm = \log_a ( 2x \times x^3/y^3)$
$\rm = \log_a (2x^4/y^3)$
c) $\rm \log_a x^2 - 2 \log_a \sqrt{x} = \log_a x$
Solution:
Given,
$\rm = \log_a x^2 - 2 \log_a \sqrt{x}$
$\rm = \log_a x^2 - 2 \log_a (x)^{\frac{1}{2}}$
Using the power rule of logarithm
$\rm = 2 \log_a x - 2 \times \frac{1}{2} \log_a x$
$\rm = 2 \log_a x - \log_a x$
$\rm = \log_a x$
d) $\rm a \log_a x = x$
Solution:
Given,
$\rm = a \log_a x$
e) $\rm \log_a a^x = x$
Solution:
Given,
$\rm = \log_a a^x$
$\rm = x \log_a a$
$\rm = x \times 1$
$\rm = x$
f) $\rm ( \log a)^2 - (\log b)^2 = \log(ab) \cdot \log(a/b)$
Solution:
Given,
$\rm ( \log a)^2 - ( \log b)^2$
Using formula of $\rm ( a^2 - b^2 ) = (a+b)(a-b)$
$\rm = (\log a + \log b) \times ( \log a - \log b)$
$\rm = \log (ab) \cdot log(a/b)$
g) $\rm \log(1 + 2 + 3) = \log 1 + \log 2 + \log 3$
Solution:
Given,
$\rm = \log (1 + 2 + 3)$
$\rm = \log(6)$
$\rm = \log (1 \times 2 \times 3)$
Using the product rule of logarithm
$\rm = \log 1 + \log 2 + \log 3$
h) $\rm x^{\log y - \log z} \cdot y ^{\log z - \log x} \cdot z ^{\log x - \log y} = 1$
Solution:
Given,
$\rm = x^{\log y - \log z} \cdot y ^{\log z - \log x} \cdot z ^{\log x - \log y}$
j) $\rm \log_a \sqrt{ a \sqrt{a \sqrt{a^2}}} = 1$
Solution:
Given,
$\rm = \log_a \sqrt{a \sqrt{a \sqrt{a^2}}}$
$\rm = \log_a \sqrt{a \sqrt {a \times a }}$
$\rm = \log _ a \sqrt{ a \sqrt{ a^2}}$
$\rm = \log _a \sqrt{a \times a }$
$\rm = \log _a \sqrt{a^2}$
$\rm = \log_a (a)$
$\rm = 1$
2) If $\rm a^2 + b^2 = 2ab$, show that $\log \frac{a+b}{2} = \frac{\log a + \log b}{2}$
Solution:
Given,
0 Comments
You can let us know your questions in the comments section as well.