Question: Prove that $\dfrac{(1+tanA)² + (1 - tanA)²}{(1 + cotA)² + (1-cotA)²} = tan²A$
We know,
(a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
So,
(a + b)² + (a - b)² = a² + 2ab + b² + a² - 2ab + b²
= 2(a² + b²)
Solution:
Taking LHS
$= \dfrac{(1+tanA)² + (1 - tanA)²}{(1 + cotA)² + (1-cotA)²}$
$= \dfrac{1 +2tanA + tan²A + 1 -2tanA + tan²A}{1 + 2cotA + cot²A + 1 -
2cotA + cot²A}$
$= \dfrac{2(1 + tan²A)}{2(1 + cot²A}$
$= \dfrac{1 + tan²A}{1 + cot²A}$
$= \dfrac{1 + tan²A}{1 + \frac{1}{tan²A}}$
$= \dfrac{1 + tan²A}{\frac{tan²A + 1}{tan²A}}$
$= \dfrac{1 + tan ²A}{tan²A + 1} × tan²A$
$= tan²A$
= RHS
#SciPiPupil
#Trigonometry
1 Comments
You can always check our blog for more solutions!
ReplyDeleteYou can let us know your questions in the comments section as well.