4 - Inverse Functions
You can check the source, about author and much more about the book in the
description at the bottom of this post.
Remember the following points:
- The function obtained by inversing a function may not necessarily be a function.
- For the inverse of a function to be a function, the initial function should be a one to one onto function.
Here are more solutions from Algebra:
1. Find the inverse function of the following function:
a) f={(x,y): y=x and x = {1,2,3}}
Solution:
Given,
f={(1,1),(2,2),(3,3)}
So,
Inverse of function f = {(1,1),(2,2),(3,3)}
2a) If f={(1,2),(2,3),(4,5)}, find f^{-1} and the domain and
range of
f^{-1}.
Solution:
f^{-1} = {(2,1),(3,2),(5,4)}
Domain of f^{-1} = {2,3,5}
Range of f^{-1} = {1,2,4}
3a) If f={(1,5),(2,4),(3,6)} and fog={(5,6),(4,5),(6,4)} then
find g^{-1}.
Solution:
fog={(5,6),(4,5),(6,4)}
f = {(1,5),(2,4),(3,6)}
We know, in fog, f is the range and g is the domain.
So, g = {(5,3),(4,1),(6,2)}
And, g^{-1} = {(1,4),(2,6),(3,5)}
4. Find the inverse functions of the following functions:
a) f(x) = 2x + 3
Solution:
Let, f(x) = y = 2x + 3
Interchanging the roles of x and y, we get,
x = 2y + 3
or, x - 3 = 2y
or, y = (x - 3)/2
So, f^{-1} = \dfrac{x - 3}{2}
c) f(x) = (x + 5)/3
Solution:
Let f(x) = y = (x + 5)/3
Interchanging the roles of x and y, we get,
x = (y + 5)/3
or, 3x = y + 5
or, 3x - 5 = y
or, y = 3x - 5
So, f^{-1} = 3x - 5
e) f:x - > (2x + 5)/6
Solution:
Let f(x) = y = (2x+5)/6
Interchanging the roles of x and y, we get,
x = (2y +5)/6
or, 6x = 2y + 5
or, 6x - 5 = 2y
or, y = (6x -5)/2
So, f^{-1} = \dfrac{6x - 5}{2}
g) f:x -> (2x +3)/(x -3); x ≠3
Solution:
Let f(x) = y = (2x + 3)/(x - 3)
Interchanging the roles of x and y, we get,
x = (2y + 3)/(y - 3)
or, x(y - 3) = 2y + 3
or, xy - 3x = 2y + 3
or, xy - 2y - 3x = 3
or, xy - 2y = 3 + 3x
or, y(x - 2) = 3x + 3
or, y = (3x + 3)/(x - 2)
So, f^{-1} = \dfrac{3x + 3}{x - 2}
i) f:x -> (4x + 7)/(5x + 3)
Solution:
Let f(x) = y = (4x + 7)/(5x +3)
Interchanging the roles of x and y, we get,
x = (4y +7)/(5y +3)
or, x(5y + 3) = 4y +7
or, 5xy + 3x = 4y + 7
or, 3x - 7 = 4y - 5xy
or, 3x - 7 = y(4 - 5x)
or, y(4 -5x) = 3x - 7
or, y = (3x - 7)/(4 - 5x)
So, f^{-1} = \dfrac{3x - 7}{4 - 5x}
5a) If f(x) = (x -5)/4 and f-¹(x) = 25, find the value of x.
Solution:
Let f(x) = y = (x -5)/4
Interchanging roles of x and y, we get,
x = (y -5)/4
or, 4x = y - 5
or, y = 4x + 5
So, f-¹(x) = 4x + 5
Given,
f-¹(x) = 25
or, 4x + 5 = 25
or, 4x = 25 - 5
or, 4x = 20
So, value of x = 5
6a) If f(x) = 8 - 3x, evaluate f-¹(-4) and ff(2).
Solution:
Let f(x) = y = 8 - 3x
Interchanging the roles of x and y, we get,
x = 8 - 3y
or, 3y + x = 8
or, 3y = 8 - x
or, y = (8-x)/3
So, f-¹(x) = (8 - x)/3
So, f-¹(-4) = {8 - (-4)}/3 = (8+4)/3 = 12/3 = 4
And,
ff(x) = fof(x) = f[f(x)]
= f(8 - 3x)
= 8 - 3(8 - 3x)
= 8 - 24 + 9x
= 9x - 16
So, ff(2) = 9×2 - 16 = 18 - 16 = 2
7a) If f(4x+5) = 12x + 18 then find f-¹(x).
Solution:
Here,
f(4x + 5) = 12x + 18
or, f(4x + 5) = 12x + 15 + 3
or, f(4x + 5) = 3(4x + 5) + 3
or, f(x) = 3x + 3
Let f(x) = y = 3x + 3
Interchanging the roles of x and y, we get,
x = 3y + 3
or, x - 3 = 3y
or, (x - 3)/3 = y
So, f-¹(x) = (x -3)/3
8a) If f(x) = 2x +7, find f(x+2) and f^{-}(x+2).
Solution:
Given,
f(x) = 2x +7
Now,
f(x+2) = 2(x +2) + 7
= 2x + 4 + 7
= 2x + 11
And,
Let f(x) = y = 2x +11
Interchanging the roles of x and y, we get,
or, x = 2y + 11
or, x -11 = 2y
or, 2y = x -11
or, y = \frac{x -11}{2}
So, f^{-1}(x+2) = \frac{x -11}{2}
9a) If f(x) = 2x +1, g(x) = \frac{x-5}{2} then find the value of
f^{-1}og^{-1}(3).
Solution:
Given,
f(x) = 2x +1
Let, f(x) = y = 2x +1
or, y = 2x +1
Interchanging the roles of x and y, we get,
or, x = 2y +1
or, x -1 = 2y
or, 2y = x -1
or, y = \frac{x -1}{2}
So, f^{-1}(x) = \frac{x-1}{2}
And,
g(x) = \frac{x-5}{2}
Let, g(x) = y = \frac{x-5}{2}
or, y = \frac{x-5}{2}
Interchanging the roles of x and y, we get,
or, x = \frac{y -5}{2}
or, 2x = y -5
or, 2x +5 = y
So, g^{-1}(x) = 2x+5
Now,
f^{-1}g{-1}(x) = f^{-1}[g^{-1}(x)]
= f^{-1}[2x +5]
= \frac{2x + 5-1}{2}
= \frac{2x+4}{2}
= \frac{2(x+2)}{2}
= x+2
So,
f^{-1}g{-1}(3) = (3)+2 = 5
10a) If f(x) = 1 +2x and g(x) = \frac{1}{1-x}, where x ≠1, find the
value of g^{-1}\frac{1}{2} and fog(-1).
Solution:
Given,
f(x) = 1 + 2x
g(x) = \frac{1}{1-x}, x≠1
Let g(x) = y = \frac{1}{1-x}
or, y = \frac{1}{1-x}
Interchanging the roles of x and y, we get,
or, x = \frac{1}{1 - y}
or, x(1 - y) = 1
or, x - xy = 1
or, x -1 = xy
or, \frac{x-1}{x} = y
So, g^{-1}(x) = \frac{x-1}{x}
And,
g^{-1}(\frac{1}{2}) = \dfrac{ \frac{1}{2} - 1}{\frac{1}{2}}
= \dfrac{1 - 2}{2} × \dfrac{2}{1}
= -1
Now,
fog(x) = f[g(x)]
= f[\frac{1}{1-x}]
= 1 + 2 × \frac{1}{1 - x}
= 1 + \frac{2}{1-x}
Again,
fog(-1) = 1 + \frac{2}{1-(-1)}
= 1 + \frac{2}{2}
= 1 + 1
= 2
11a) If f(x) = 3x + 4; g(x) = 2(x +1), prove that fog = gof and find
the value of f^{-1}(2).
Solution:
Given,
f(x) = 3x + 4
g(x) = 2(x + 1)
To prove: fog = gof
Taking LHS
fog(x) = f[g(x)]
= f[2(x +1)]
= f[2x + 2]
= 3(2x + 2) + 4
= 6x + 6 + 4
= 6x + 10
Taking RHS
gof(x) = g[f(x)]
= g[3x + 4]
= 2(3x + 4 + 1)
= 2(3x + 5)
= 6x + 10
Since, LHS = 6x + 10 = RHS
fog(x) = gof(x) #proved.
Again,
Let f(x) = y = 3x + 4
or, y = 3x + 4
Interchanging the roles of x and y
or, x = 3y + 4
or, x - 4 = 3y
or, 3y = x - 4
or, y = \frac{x - 4}{3}
\therefore f^{-1}(x) = \frac{x -4}{3}
Put x = 2 in f^{-1}(x), we get,
f^{-1}(2) = \dfrac{2-4}{3}
= \dfrac{-2}{3}$
= - \dfrac{2}{3}$
Hence, the required value of f^{-1}(2) is -2/3.
12a) Given that function f(x) = 3x + a. If ff (6) = 10, find the value
of a and f^{-1}(4).
Solution:
Given,
f(x) = 3x + a
We know,
fof (6) = f[f(x)]
or, 10 = f[3x + a]
or, 10 = 3(3x + a) + a
or, 10 = 9(6) + 3a + a
or, 10 = 9(6) + 4a
or, 10 = 54 + 4a
or, 4a = 10 - 54
or, 4a = - 44
or, 4 × a = 4 × (-11)
So, a = -11
Now,
f(x) = 3x + (-11) = 3x -11
Let y = f(x) = 3x - 11
or, y = 3x - 11
Interchanging the roles of x and y
or, x = 3y - 11
or, x + 11 = 3y
or, y = \frac{x + 11}{3}
\therefore f^{-1}(x) = \frac{x +11}{3}
And,
f^{-1}(4) = \frac{4 +11}{3}
= \frac{15}{3}
= 5
So, f^{-1}(-4) = 5.
13a) Given that f(x)=4x +7 and g(x) = 3x -5. If fg^{-1} = 15, find
the value of x.
Solution:
Given,
f(x) = 4x +7
g(x) = 3x -4
Let g(x) = y = 3x - 4
or, y = 3x - 4
Interchanging the roles of x and y, we get,
or, x = 3y - 4
or, x - 4 = 3y
or, y = \frac{x - 4}{3}
\therefore g^{-1}(x) = \frac{x - 4}{3}
Now,
fg^{-1}(x) = f[g^{-1}(x)]
or, 15 = f[\frac{x -4}{3}]
or, 15 = 4 × \frac{x - 4}{3} + 7
or, 15 - 7 = \frac{4x - 16}{3}
or, 8×3 = 4x - 16
or, 24 + 16 = 4x
or, 40 = 4x
\therefore x = 10
14a) If f(x) = 5 - \frac{6}{x} then what is the value of x at f(x) =
- f^{-1}(-1)?
Solution:
Here,
f(x) = 5 - \frac{6}{x}
Let y = f(x) = 5 - \frac{6}{x}
or, y = 5 - \frac{6}{x}$
Interchanging the roles of x and y, we get,
or, x = 5 - \frac{6}{y}
or, \frac{6}{y} = (5 - x)
or, y = \frac{6}{5-x}
So, f^{-1}(x) = \frac{6}{5-x}
Also, f^{-1}(-1) = \frac{6}{5-(-1)}
= \frac{6}{6}
= 1
Given,
f(x) = - f^{-1}(-1)
or, 5 - \frac{6}{x} = - (1)
or, \frac{5x -6}{x} = -1
or, 5x - 6 = -x
or, 5x + x = 6
or, 6x = 6
\therefore x = 1
15a) If f(x) = 4x + 5 and g(x) = 8x + 9, prove that f^{-1}og(x) is a
linear function.
Solution:
A function in the form of f(x) = mx + c, is said to be a linear
function.
Given,
f(x) = 4x + 5
g(x) = 8x + 9
Let y = f(x) = 4x + 5
or, y = 4x + 5
Interchanging the roles of x and y, we get,
or, x = 4y + 5
or, x - 5 = 4y
or, y = \frac{x - 5}{4}
\therefore f^{-1}(x) = \frac{x - 5}{4}
Now,
f^{-1}og(x) = f^{-1}[g(x)]
= f^{-1}[ 8x + 9]
= \frac{8x + 9 - 5}{4}
= \frac{8x + 4}{4}
= \frac{4(2x + 1)}{4}
= 2x +1
Hence, f^{-1}og(x) is a linear function. #proved.
16a) Let f(x) = \frac{3x +5}{x -2} and g(x) = 7 be two functions.
Prove that f^{-1}og(x) is a constant function.
Solution:
A function in the form of f(x) = c where c is a constant number is said
to be a constant function.
Here,
f(x) = \frac{3x +5}{x -2}
g(x) = 7
Let y = f(x) = \frac{3x + 5}{x -2}
or, y = \frac{3x +5}{x -2}
Interchanging the roles of x and y, we get,
or, x = \frac{3y + 5}{y -2}
or, x(y - 2) = 3y + 5
or, xy - 2x = 3y +5
or, xy - 3y - 2x = 5
or, y(x - 3) = 2x +5
or, y = \frac{2x +5}{x -3}
\therefore f^{-1}(x) = \frac{2x +5}{x -3}
Now,
f^{-1}og(x) = f^{-1}[g(x)]
= f^{-1}[9]
= \frac{2×9+5}{9-3}
= \frac{18+5}{6}
= \frac{23}{6}
Hence, f^{-1}og(x) is a constant function. #proved.
17a) Let, f(x) = 2x +3 and g(x) =x²+2x +1 be two functions. Prove that
f^{-1}og(x) is a quadratic function.
Solution:
Given,
f(x) = 2x + 3
g(x) = x² +2x +1 = (x +1)²
Let y = f(x) = 2x + 3
or, y = 2x + 3
Interchanging the roles of x and y, we get,
or, x = 2y + 3
or, x - 3 = 2y
or, y = \frac{x -3}{2}
\therefore f^{-1}(x) = \frac{x -3}{2}
Now,
f^{-1}og(x) = f^{-1}[g(x)]
= f^{-1}[(x +1)²]
= 2(x +1)² + 3
It is the equation of a parabola which is definitely a quadratic
function.
= 2(x²+2x+1)+3
= 2x² + 4x + 2 + 3
= 2x² + 4x + 5 #proved
18 a) Given that f(x) = x³ + x² + 1 and g(x) = x -1. Prove that
fog^{-1} is a cubic function.
Solution:
Let y = g(x) = x - 1
or, y = x -1
Interchanging the roles of x and y, we get,
or, x = y - 1
or, y = x + 1
\therefore g^{-1}(x) = x + 1
Now,
fog^{-1}(x)= f[g^{-1}(x)]
= f[x + 1]
= (x +1)^3 + (x +1)^2 + 1
= x^3 + 3x^2 + 3x + 1 + x^2 + 2x + 1 + 1
= x^3 + 4x^2 + 5x + 3
Since, the above function has its highest degree equal to 3, it
is proved that fog^{-1}(x) is a cubic function.
19 a) Given that f(x) = 3x + 5 and g(x) = \dfrac{3x +2}{4}. What value
of x makes fog^{-1}(x)$ an identity function?
Solution:
Let y = g(x) = \dfrac{3x +2}{4}
or, y = \dfrac{3x +2}{4}
Interchanging the roles of x and y, we get,
or, x = \dfrac{3y +2}{4}
or, 4x = 3y +2
or, 4x - 2 = 3y
\therefore y = \dfrac{4x -2}{3}
Given,
fog^{-1}(x) = x
or, f[g^{-1}(x)] = x
or, f[ \frac{4x -2}{3} ] = x
or, 3 × \dfrac{4x -2}{3} + 5 = x
or, 4x - 2 + 5 = x
or, 4x - x + 3 = 0
or, 3x = - 3
\therefore x = -1
About Readmore Optional Mathematics Book 10
Author: D. R. Simkhada
Editor: I. R. Simkhada
Readmore Publishers and Distributors
T.U. Road, Kuleshwor - 14, Kathmandu, Nepal
Phone: 4672071, 5187211, 5187226
readmorenepal6@gmail.com
About this page:
Inverse Functions - Solved Exercises | Class 10 Readmore
Optional Mathematics is a collection of the solutions
related to exercises of Inverse Functions from the Algebra
chapter for Nepal's Secondary Education Examination (SEE)
appearing students.
#SciPiPupil
3 Comments
how can i download this as pdf?
ReplyDeleteSorry, PDF is not available now!
DeleteCan you solve all number
ReplyDeleteYou can let us know your questions in the comments section as well.