Grade 11 Circle Exercise 1 Solutions | Basic Mathematics Grade XI by Sukunda Pustak Bhawan
Grade 11 Basic Mathematics by Sukunda Pustak Vawan Notes and Solutions | Nepal
Disclaimer:
6) If vec{a} and \vec{b} are two vectors of unit length and \theta is the angle between them, show that
\dfrac{1}{2} | \vec{a} \ - \ \vec{b} | \ = \ \sin \dfrac{\theta}{2}
Solution:
Given,
\text{A} = \frac{\pi}{2}
LHS
= \dfrac{1}{2} | \vec{a} \ - \ \vec{b} |
= \sqrt{ \left ( \dfrac{1}{2} | \vec{a} \ - \ \vec{b} | \right )^2}
= \sqrt{ \dfrac{1}{4} \left ( a^2 \ + \ b^2 \ + \ 2 \vec{a} \vec{b} \cos \theta \right ) }
|a| \ = \ |b| \ = \ 1
= \sqrt{ \dfrac{1}{4} \left ( 1 + 1 + 2 \cos \theta \right )}
= \sqrt{ \dfrac{1}{4} \times 2 ( 1 + \cos \theta)}
= \sqrt{ \dfrac{1}{2} \times 2 \sin^2 \dfrac{\theta}{2}}
= \sqrt{ \sin^2 \dfrac{\theta}{2} }
= \sin \dfrac{\theta}{2}
RHS
7) In a right angled triangle ABC, right angle at A, show that AB^2 + AC^2 = BC^2
Solution:
In a triangle, let AB = \vec{c}, AC = \vec{b} and BC = \vec{a}
We know,
\vec{a} + \vec{b} + \vec{c} = 0
\vec{a} = - ( \vec{b} + \vec{c} )
\text{Squaring both sides}
a^2 = b^ 2 + c^2 + 2bc \cos ( \pi - A)
a^2 = b^2 + c^2 + 2bc \cos ( \pi - \frac{\pi}{2} )
a^2 = b^2 + c^ 2 + 2bc \cos \frac{\pi}{2}
a^2 = b^2 + c^2 + 0
a^2 = b^2 + c^2
\therefore \text{BC}^2 = \text{AC}^2 + \text{AB}^2
\therefore \text{AB}^2 + \text{AC}^2 = \text{BC}^2
9. Prove vectorically that
a) (i) b = c cosA + a cos C
Solution:
In a triangle, let AB = \vec{c}, AC = \vec{b} and BC = \vec{a}, taken in order.
We know,
\vec{a} + \vec{b} + \vec{c} = 0
\vec{b} = - ( \vec{a} + \vec{c} )
\text{Multiply both sides scalarly by } \vec{b}
\vec{b}.\vec{b} = - ( \vec{a} + \vec{c} ) \vec{b}
b^2 = - \vec{a}.\vec{b} - \vec{c}.\vec{b}
b^2 = - ab \cos ( \pi - C) - cb \cos ( \pi - A)
b^2 = - ab (- \cos c) - cb (- \cos A)
b^2 = ab \cos C + bc \cos A
b = a \cos C + c \cos A
\therefore b = c \cos A + a \cos C
a) (ii) c = a cosB + b cos A
Solution:
In a triangle, let AB = \vec{c}, AC = \vec{b} and BC = \vec{a}, taken in order.
We know,
\vec{a} + \vec{b} + \vec{c} = 0
\vec{c} = - ( \vec{a} + \vec{b} )
\text{Multiply both sides scalarly by } \vec{c}
\vec{c}.\vec{c} = - ( \vec{a} + \vec{b} ) \vec{c}
c^2 = - \vec{a}.\vec{c} - \vec{b}.\vec{c}
c^2 = - ac \cos ( \pi - B) - bc \cos ( \pi - A)
c^2 = - ac (- \cos B) - cb (- \cos A)
c^2 = ac \cos B + bc \cos A
c = a \cos B + b \cos A
\therefore c = b \cos A + a \cos B
0 Comments
You can let us know your questions in the comments section as well.