Grade 11 Circle Exercise 1 Solutions | Basic Mathematics Grade XI by Sukunda Pustak Bhawan
Grade 11 Basic Mathematics by Sukunda Pustak Vawan Notes and Solutions | Nepal
Disclaimer:
6) If $vec{a}$ and $\vec{b}$ are two vectors of unit length and $\theta$ is the angle between them, show that
$$ \dfrac{1}{2} | \vec{a} \ - \ \vec{b} | \ = \ \sin \dfrac{\theta}{2}$$
Solution:
Given,
$\text{A} = \frac{\pi}{2}$
LHS
$$= \dfrac{1}{2} | \vec{a} \ - \ \vec{b} |$$
$$= \sqrt{ \left ( \dfrac{1}{2} | \vec{a} \ - \ \vec{b} | \right )^2}$$
$$= \sqrt{ \dfrac{1}{4} \left ( a^2 \ + \ b^2 \ + \ 2 \vec{a} \vec{b} \cos \theta \right ) }$$
$$|a| \ = \ |b| \ = \ 1$$
$$= \sqrt{ \dfrac{1}{4} \left ( 1 + 1 + 2 \cos \theta \right )}$$
$$= \sqrt{ \dfrac{1}{4} \times 2 ( 1 + \cos \theta)}$$
$$= \sqrt{ \dfrac{1}{2} \times 2 \sin^2 \dfrac{\theta}{2}}$$
$$= \sqrt{ \sin^2 \dfrac{\theta}{2} }$$
$$= \sin \dfrac{\theta}{2}$$
RHS
7) In a right angled triangle ABC, right angle at A, show that AB^2 + AC^2 = BC^2
Solution:
In a triangle, let AB = $\vec{c}$, AC = $\vec{b}$ and BC = $\vec{a}$
We know,
$$ \vec{a} + \vec{b} + \vec{c} = 0$$
$$ \vec{a} = - ( \vec{b} + \vec{c} )$$
$$\text{Squaring both sides}$$
$$ a^2 = b^ 2 + c^2 + 2bc \cos ( \pi - A)$$
$$ a^2 = b^2 + c^2 + 2bc \cos ( \pi - \frac{\pi}{2} )$$
$$ a^2 = b^2 + c^ 2 + 2bc \cos \frac{\pi}{2}$$
$$ a^2 = b^2 + c^2 + 0$$
$$ a^2 = b^2 + c^2$$
$$ \therefore \text{BC}^2 = \text{AC}^2 + \text{AB}^2$$
$$ \therefore \text{AB}^2 + \text{AC}^2 = \text{BC}^2$$
9. Prove vectorically that
a) (i) b = c cosA + a cos C
Solution:
In a triangle, let AB = $\vec{c}$, AC = $\vec{b}$ and BC = $\vec{a}$, taken in order.
We know,
$$ \vec{a} + \vec{b} + \vec{c} = 0$$
$$ \vec{b} = - ( \vec{a} + \vec{c} )$$
$$\text{Multiply both sides scalarly by } \vec{b}$$
$$ \vec{b}.\vec{b} = - ( \vec{a} + \vec{c} ) \vec{b}$$
$$ b^2 = - \vec{a}.\vec{b} - \vec{c}.\vec{b}$$
$$ b^2 = - ab \cos ( \pi - C) - cb \cos ( \pi - A)$$
$$ b^2 = - ab (- \cos c) - cb (- \cos A)$$
$$ b^2 = ab \cos C + bc \cos A$$
$$ b = a \cos C + c \cos A$$
$$\therefore b = c \cos A + a \cos C$$
a) (ii) c = a cosB + b cos A
Solution:
In a triangle, let AB = $\vec{c}$, AC = $\vec{b}$ and BC = $\vec{a}$, taken in order.
We know,
$$ \vec{a} + \vec{b} + \vec{c} = 0$$
$$ \vec{c} = - ( \vec{a} + \vec{b} )$$
$$\text{Multiply both sides scalarly by } \vec{c}$$
$$ \vec{c}.\vec{c} = - ( \vec{a} + \vec{b} ) \vec{c}$$
$$ c^2 = - \vec{a}.\vec{c} - \vec{b}.\vec{c}$$
$$ c^2 = - ac \cos ( \pi - B) - bc \cos ( \pi - A)$$
$$ c^2 = - ac (- \cos B) - cb (- \cos A)$$
$$ c^2 = ac \cos B + bc \cos A$$
$$ c = a \cos B + b \cos A$$
$$\therefore c = b \cos A + a \cos B$$
0 Comments
You can let us know your questions in the comments section as well.