2 - Inverse Matrix
In this post, you can check the solutions to the exercises of
Inverse matrices of Matrix chapter of Readmore Optional Mathematics
by DR Simkhada. It consists of complete answers to all odd questions
mentioned in the textbook.
Before starting, make sure to check the following note of
Determinant.
Important Definitions
- A square matrix whose determinant is equal to zero is said to be a singular matrix.
- A square matrix whose determinant is any number other than zero is said to be a non-singular matrix.
- Inverse of a square and non-singular matrix is only possible.
- When two matrices are inverse to each other, then their product is an identity matrix.
All solutions related to matrix:
1. Multiply the following matrices and show that A and B are inverse to
each other.
a) A = $\left ( \displaylines{2 & 1 \\ 5&3 }\right )$ and B =
$\left ( \displaylines{3&-1 \\ -5&2} \right )$
Solution:
AB = $\left ( \displaylines{2&1 \\5&3} \right ) \left (
\displaylines{3&-1 \\-5&2} \right )$
$= \left ( \displaylines{2(3) + 1(-5) & 2(-1) + 1(2) \\ 5(3) + 3(-5)
& 5(-1) + 3(2) } \right )$
$= \left ( \displaylines{6 -5 & -2 + 2 \\ 15-15 & -5 + 6}
\right )$
$= \left ( \displaylines{1 & 0\\0&1} \right )$
Hence, matrices A and B are inverse to each other.
2. Find the inverse of:
a) $\left ( \displaylines{3&-5\\-1&2} \right )$
Solution:
Let A = $\left ( \displaylines{3&-5 \\-1&2} \right )$
First, we need to find the determinant to check whether the matrix
is singular or non-singular matrix.
|A| = $\left | \displaylines{3&-5 \\-1&2} \right |$
$= 3(2) - (-5)(-1)$
$= 6 - 5$
$= 1$
Since, |A| ≠ 0, matrix A is a non-singular matrix and its inverse is
possible.
Now,
Adjoint matrix of A = $\left ( \displaylines{ 2&5\\1&3} \right
)$
$A ^{-1}= \frac{1}{|A|} (Adjoint matrix of A)$
$= \frac{1}{1} \left ( \displaylines{2&5\\1&3} \right )$
Hence, the inverse of matrix A is found.
c) $\left ( \displaylines{2 & 15 \\ 3 & 23} \right )$
Solution:
Let A = $\left ( \displaylines{2&15 \\3&23} \right )$
First, we need to find the determinant to check whether the matrix is singular or non-singular matrix.
|A| = $\left | \displaylines{2&15 \\3&23} \right |$
$= 2(23) - (15)(3)$
$= 46 - 45$
$= 1$
Since, |A| ≠ 0, matrix A is a non-singular matrix and its inverse is possible.
Now,
Adjoint matrix of A = $\left ( \displaylines{ 23&-15\\-3&2} \right )$
$A ^{-1}= \frac{1}{|A|} (Adjoint matrix of A)$
$= \frac{1}{1} \left ( \displaylines{23&-15\\-3&2} \right )$
Hence, the inverse of matrix A is found.
e) $\left ( \displaylines{secA & tanA \\ secA & tanA} \right )$
Solution:
Let A = $\left ( \displaylines{secA&tanA \\secA&tanA} \right )$
First, we need to find the determinant to check whether the matrix is singular or non-singular matrix.
|A| = $\left | \displaylines{secA&tanA \\secA&tanA} \right |$
$= secA(secA) - (tanA)(tanA)$
$= sec^2A- tan^2A$
$= 1$
Since, |A| ≠ 0, matrix A is a non-singular matrix and its inverse is possible.
Now,
Adjoint matrix of A = $\left ( \displaylines{ secA&-tanA\\-tanA&secA} \right )$
$A ^{-1}= \frac{1}{|A|} (Adjoint matrix of A)$
$= \frac{1}{1} \left ( \displaylines{secA&-tanA\\-tanA&secA} \right )$
Hence, the inverse of matrix A is found.
3. Show that each of the following matrices is its own inverse.
a) $\left ( \displaylines{ 0&1 \\ 1&0} \right )$
Solution:
Let A = $\left ( \displaylines{ 0&1 \\ 1&0} \right )$
If A is the inverse of itself then A×A = I should be true.
LHS
$= \left ( \displaylines{0&1\\1&0} \right ) \left ( \displaylines{0&1\\1&0} \right )$
$= \left ( \displaylines {0+1&0+0\\0+0&1+0} \right)$
$= \left ( \displaylines { 1&0\\0&1} \right )$
$= I$
RHS
Hence, it is proved that the given matrix is inverse of
itself.
c) $\left ( \displaylines{ 1&0 \\ 0&-1} \right )$
Solution:
Let A = $\left ( \displaylines{ 1&0 \\ 0&-1} \right )$
If A is the inverse of itself then A×A = I should be true.
LHS
$= \left ( \displaylines{1&0\\0&-1} \right ) \left ( \displaylines{1&0\\0&-1} \right )$
$= \left ( \displaylines {1*1 + 0*0&1*0 + 0*(-1)\\0*1 + (-1)*0&0*0+(-1)*(-1)} \right)$
$= \left ( \displaylines { 1&0\\0&1} \right )$
$= I$
RHS
Hence, it is proved that the given matrix is inverse of itself.
4. If $\text{A} = \left ( \displaylines{ 5 & -3 \\ 2 & -4 } \right) $ and $\text{B} = \left ( \displaylines{ 4 & 2 \\ -3 & 5 } \right) $, verify that $|BA| = |A||B|$.
Solution:
Here,
$\text{A} = \left ( \displaylines{ 5 & -3 \\ 2 & -4 } \right) $
$\text{B} = \left ( \displaylines{ 4 & 2 \\ -3 & 5 } \right) $
To verify: $|BA| = |A||B|$
For $|BA|$
Let us find BA first
$BA = \left ( \displaylines{ 5 & -3 \\ 2& -4} \right ) \left( \displaylines{4 & 2 \\ -3 & 5} \right )$
$\implies \left ( \displaylines{ 20+9 & 10 -15 \\ 8+12 & 4 -20} \right ) $
$\implies \left ( \displaylines{ 29 & -5 \\ 20 & -16} \right )$
Now,
$|BA| = 29 * (-16) - (-5)*20)$
$\implies -464 +100$
$\implies |BA| = -364$ --- (i)
For $|A| |B|$
First, we find determinant of A,
$|A| = 5*(-4) - (-3)*2$
$\implies -20 + 6$
$\implies |A| = -14$
Second, we find determinant of B,
$|B| = 4*5 - (-3)*2$
$\implies 20 + 6$
$\implies |B| = 26$
So, $|A||B| = (-14)*26 = -364$ --- (ii)
Since, values of $|BA|$ and $|A||B|$ are equal in equation (i) and equation (ii), i.e. -364, the given relation $|BA| = |A||B|$ is verified.
5 a) If A = $\left ( \displaylines{ 3 & 2 \\ 7 & 5} \right )$ and B = $\left ( \displaylines{ -2 & 7 \\ -3 & 9} \right ) $, verify that (AB)$^{-1}$ = B$^{-1}$A$^{-1}$.
Solution:
Given,
A = $\left ( \displaylines{ 3 & 2 \\ 7 & 5} \right)$
B = $\left ( \displaylines{ -2 & 7 \\ -3 & 9} \right )$
To verify: (AB)$^{-1}$ = B$^{-1}$A$^{-1}$
We know, for matrix A, $A^{-1} = \dfrac{1}{|A|} (\text{adjoint of a A})$
LHS
$= (AB)^{-1}$
$= \left [ \left ( \displaylines{ 3 & 2 \\ 7 & 5} \right ) \left ( \displaylines{-2 & 7 \\ -3 &9} \right ) \right ] ^{-1}$
$= \left [ \displaylines{-6-6 & 21+18 \\ -14-15 & 49+45} \right ] ^{-1}$
$= \left [ \displaylines{-12 & 39 \\ -29 & 94} \right ]^{-1}$
$= \dfrac{1}{ \left | \displaylines { -12 & 39 \\ -29 & 94} \right | } * \left ( \displaylines{ 94 & -39 \\ 29 & -12} \right )$
$= \dfrac{1}{-12(94) - (-29)39} * \left ( \displaylines{94 & -39 \\ 29 & 012} \right)$
$= \dfrac{1}{3} * \left ( \displaylines{ 94 & -39 \\ 29 & -12} \right)$
RHS
$= B^{-1} A^{-1}$
$= \dfrac{1}{|B|} * (\text{adjoint of B}) * \dfrac{1}{|A|} * (\text{adjoint of A})$
$= \dfrac{1}{ \left | \displaylines{-2 & 7 \\ -3 & 9} \right |} * \left ( \displaylines{9 & -7 \\ 3 & 2} \right ) * \dfrac{1}{ \left | \displaylines{3 & 2 \\ 7 & 5} \right | } * \left ( \displaylines{ 5 & -2 \\ -7 & 3} \right )$
$= \dfrac{1}{(-2)9 - (7)(-3)} * \left ( \displaylines{9 & -7 \\ 3 & -22} \right) * \dfrac{1}{3(5) - 7(2)} * \left ( \displaylines{5 & -2 \\ -7 &3} \right)$
$= \dfrac{1}{-18 + 21} * \dfrac{1}{15 -14} * \left ( \displaylines{ 45 + 49 & -18-21 \\ 15 + 14 & -6-6 } \right ) $
$= \dfrac{1}{3} * \dfrac{1}{1} * \left ( \displaylines{94 & -39 \\ 20 & -12} \right )$
$= \dfrac{1}{3} \left ( \displaylines{94 & -30 \\ 20 & -12} \right)$
Since, LHS = RHS, given relation is verified.
6 a) If the inverse of the matrix $\left ( \displaylines{ x & 2x-9 \\ -y & 3} \right )$ is the matrix $\left ( \displaylines{3 & 5 \\ y & x} \right)$, find the values of x and y.
Solution:
Let matrix A be $\left ( \displaylines{ x & 2x-9 \\ -y & 3} \right )$.
Let matrix B be $\left ( \displaylines{3 & 5 \\ y & x} \right)$.
When two matrices are inverse of each other, then the following relation holds true.
$AB = BA= I$
Taking $AB = I$
$\implies \left ( \displayline{ x & 2x-9 \\ -y & 3} \right ) \left ( \displaylines{3 & 5 \\ y & x} \right) = \left( \displaylines{ 1 & 0 \\ 0 & 1} \right)$
$\implies \left ( \displaylines{3x + y(2x-9) & 5x + x(2x-9) \\ -3y + 3y & -5y + 3x} \right ) = \left ( \displaylines{ 1 & 0 \\ 0 & 1} \right ) $
From relation of equal matrices, we get,
$(i) 3x + y(2x-9) = 1$
$(ii) 5x + x(2x-9) = 0$
$(iii) -3y + 3y = 0$
$(iv) -5y + 3x = 1$
Solving equation (ii), we get,
$or, 5x + 2x^2 - 9x = 0$
$or, 2x^2 - 4x = 0$
$or, 2x^ 2= 4x$
$\therefore x = 2$
Putting value of x = 2 in equation (i), we get, $y = 1$
Hence, the required values of x and y are $(x,y) = (2,1)$
About Readmore Optional Mathematics Book 10
Author: D. R. Simkhada
Editor: I. R. Simkhada
Readmore Publishers and Distributors
T.U. Road, Kuleshwor - 14, Kathmandu, Nepal
Phone: 4672071, 5187211, 5187226
readmorenepal6@gmail.com
About this page:
Inverse of Matrix- Class 10 Solved Exercises | Readmore Optional
Mathematics is a collection of the solutions related to
exercises of Inverse of 2x2 square matrix from the Matrix
chapter for Nepal's Secondary Education Examination (SEE)
appearing students.
#SciPiPupil
6 Comments
Put all exercise question of inverse matrix
ReplyDeleteAllow us some time sir.
DeleteInverse matrix no 4 and 5a plz tomorrow my exam plz give me
ReplyDeleteWe are extremely sorry we couldn't help you out in time.
DeleteWhat are you doing you have only kept exercise upto 3 it's not complete
ReplyDelete3 more questions have been updated today.
DeleteYou can let us know your questions in the comments section as well.