Here is a list of solutions from Algebra chapter form Vedanta Excel in Mathematics Book 10:
- Exercise 8.1 - HCF
- Exercise 8.2 - LCM
- Exercise 9.1 - Simplification of Rational Expressions
- Exercise 10.1 - Simplification of Indices
- Exercise 10.2 - Exponential Equation of Indices
- Exercise 11.1 - Simplification of Surds
- Exercise 11.2 - Rationalisation of Surds
- Exercise 11.3 - Simple Surd Equations
- Exercise 12.1 - Simultaneous Equation
- Exercise 12.2 - Quadratic Equation
Exercise 11.1
General Section
1. Simplify:
b) $5√3 + 6√3 - √3$
Solution:
Given,
$= 5√3 + 6√3 - √3$
$= (5+6-1)√3$
$= 10√3$
d) $8\sqrt[3]{4} - \sqrt[3]{4} - 3\sqrt[3]{4}$
Solution:
Given,
$= 8\sqrt[3]{4} - \sqrt[3]{4} - 3\sqrt[3]{4}$
$ = (8-1-3) \sqrt[3]{4}$
$= 4 \sqrt[3]{4}$
f) $2\sqrt[4]{6} - \sqrt[4]{6} - 3\sqrt[4]{6}$
Solution:
Given,
$= 2\sqrt[4]{6} - \sqrt[4]{6} - 3\sqrt[4]{6}$
$= (2-1-3) \sqrt[4]{6}$
$= -2 \sqrt[4]{6}$
2. Simplify:
b) $√6 × √3 × 2√2$
Solution:
Given,
$= √6 × √3 × 2√2$
$= 2 \sqrt{6 × 3 × 2}$
$= 2 \sqrt{36}$
$= 2 \sqrt{6^2}$
$= 2 × 6$
$= 12$
c) $\sqrt[3]{9} × \sqrt[3]{3} × 3\sqrt[3]{2}$
Solution:
Given,
$= \sqrt[3]{9} × \sqrt[3]{3} × 3\sqrt[3]{2}$
$= 3 \sqrt[3]{9×3×2}$
$= 3 \sqrt[3]{27×2}$
$= 3 \sqrt[3]{3^3 × 2}$
$= 3× 3\sqrt[3]{2}$
$= 9 \sqrt[3]{2}$
e) $5 \sqrt[3]{108} ÷ 3\sqrt[3]{2}$
Solution:
Given,
$= 5\sqrt[3]{108} ÷ 3\sqrt[3]{2}$
$= \dfrac{5\sqrt[3]{108}}{3\sqrt[3]{2}}$
$= \dfrac{5}{3} × \sqrt[3]{\dfrac{108}{2}}$
$= \dfrac{5}{3} × \sqrt[3]{54}$
$= \dfrac{5}{3} × \sqrt[3]{3^3×2}$
$= \dfrac{5}{3} × 3 × \sqrt[3]{2}$
$= 5 \sqrt[3]{2}$
3. Simplify:
a) $√32 + √8 - √72$
Solution:
Given,
$= √32 + √8 - √72$
$= \sqrt{16 × 2} + \sqrt{4 × 2} - \sqrt{36 × 2}$
$= \sqrt{4^2 × 2} + \sqrt{2^2 × 2} - \sqrt{6^2 × 2}$
$= 4 √2 + 2√2 - 6√2$
$= √2 ( 4+2-6)$
$= √2 (0)$
$= 0$
b) $√27 + √75 - 8√3$
Solution:
Given,
$= √27 + √75 - 8√3$
$= \sqrt{3^2 × 3} + \sqrt{5^2 × 3} - 8√3$
$= 3 √3 + 5√3 - 8√3$
$= (3+5-8)√3$
$= (0)√3$
$= 0$
d) √12 - √75 + √48
Solution:
Given,
$= √12 - √75 + √48$
$= \sqrt{2^2 × 3} - \sqrt{5^2×3} + \sqrt{4^2 × 3}$
$= 2√3 - 5√3 + 4√3$
$= (2-5+4)√3$
$= √3$
f) $5\sqrt[3]{81} - 2\sqrt[3]{24} + \sqrt[3]{375}$
Solution:
Given,
$= 5\sqrt[3]{81} - 2\sqrt[3]{24} + \sqrt[3]{375}$
$= 5 \sqrt[3]{3^3 × 3} - 2\sqrt[3]{2^3×3} + \sqrt[3]{5^3×3}$
$= 5×3 \sqrt[3]{3} - 2×2\sqrt[3]{3} + 5\sqrt[3]{3}$
$= 15\sqrt[3]{3} - 4\sqrt[3]{3} + 5\sqrt[3]{3}$
$= (15-4+5)\sqrt[3]{3}$
$= 16\sqrt[3]{3}$
h) $3√2 + \sqrt[4]{2500} - \sqrt[4]{64} + 6√8$
Solution:
Given,
$= 3√2 + \sqrt[4]{2500} - \sqrt[4]{64} + 6√8$
$= 3√2 + \sqrt[4]{5^4 × 4} - \sqrt[4]{2^4×4} + 6\sqrt{2^2×2}$
$= 3√2 + 6\sqrt{2^2 × 2} + \sqrt[4]{5^4×4} - \sqrt[4]{2^4 ×4} $
$= 3√2 + 6×2√2 + 5\sqrt[4]{4} - 2\sqrt[4]{4}$
$= (3+12)√2 + (5-2)\sqrt[4]{4}$
$= 15√2 + 3\sqrt[4]{4}$
4. Simplify:
a) $(√3 +√2)(√3 -√2)$
Solution:
Given,
$= (√3+√2)(√3-√2)$
$= (√3)² - (√2)²$
$= 3 - 2$
$= 1$
b) $(√5 - √3) (√5 + √3)$
Solution:
Given,
$= (√5 - √3) (√5 + √3)$
$= (√5)² - (√3)²$
$= 5 -3$
$= 2$
c) $(2√5 + 3√2) (2√5 - 3√2)$
Solution:
Given,
$= (2√5 + 3√2) (2√5 - 3√2)$
$= (2√5)² - (3√2)²$
$= 4×5 - 9×2$
$= 20 -18$
$= 2$
d) $(√2 + √3)²$
Solution:
Given,
$= (√2 + √3)²$
$= (√2)² + 2×√2×√3 + (√3)²$
$= 2 + 2\sqrt{2×3} + 3$
$= 5 + 2√6$
e) (√5 - √3)²
Solution:
Given,
$= (√5 - √3)²$
$= (√5)² - 2×√5×√3 + (√3)²$
$= 5 - 2\sqrt{5×3} + 3$
$= 8 - 2\sqrt{15}$
$= 2(4 - \sqrt{15})$
f) $\left ( \sqrt{x+a} - \sqrt{x-a} \right )²$
Solution:
Given,
$= \left ( \sqrt{x+a} - \sqrt{x-a} \right )²$
$= (\sqrt{x+a} )² - 2 × \sqrt{x+a} × \sqrt{x-a} + ( \sqrt{x-a} )²$
$= (x+a) - 2 × \sqrt{(x+a)(x-a)} + (x-a)$
$= x+a+x-a - 2\sqrt{x²-a²}$
$= 2x - 2\sqrt{x²-a²}$
$= 2(x -\sqrt{x²-a²}$
g) $(2√2 - √3) (3√2 + √3)$
Solution:
Given,
$= (2√2 - √3) (3√2 +√3)$
$= 2√2 (3√2 + √3) -$$ √3(3√2+√3)$
$= 6(√2×√2) + 2(√2×√3) -$$3(√2×√3) - (√3×√3)$
$= 6×2 + 2√6 - 3√6 -3$
$= 12 -3 +(2-3)√6$
$= 9 - √6$
h) $ (3√5 - 4√2) (2√5 + 2√3)$
Solution:
Given,
$= (3√5 - 4√2) (2√5 + 2√3)$
$= 3√5 (2√5 +2√3) -$$ 4√2(2√5 +2√3)$
$= 6(√5×√5) + 6(√5×√3) -$$8(√2×√5) + 8(√2×√3)$
$= 6×5 + 6\sqrt{15} - 8\sqrt{10} + 8√6$
$= 30 + 6\sqrt{15} - 8\sqrt{10} + 8√6$
5. Simplify:
b) $\dfrac{\sqrt{x²-9}}{\sqrt{x-3}}$
Solution:
Given,
$= \dfrac{\sqrt{x²-9}}{\sqrt{x-3}}$
$= \dfrac{\sqrt{(x)²-(3)³}}{\sqrt{x-3}}$
$= \dfrac{\sqrt{(x+3)(x-3)}}{\sqrt{x-3}}$
$= \dfrac{\sqrt{x+3} × \sqrt{x-3}}{\sqrt{x-3}}$
$= \sqrt{x+3}$
d) $\dfrac{x-4}{√x+2}$
Solution:
Given,
$= \dfrac{x-4}{√x +2}$
$= \dfrac{(√x)² -2²}{√x +2}$
$= \dfrac{(√x -2) (√x +2)}{√x +2}$
$= √x -2$
f) $\dfrac{49-5x}{7-\sqrt{5x}}$
Solution:
Given,
$= \dfrac{49-5x}{7- \sqrt{5x}}$
$= \dfrac{(7)² - (\sqrt{5x})²}{7 - \sqrt{5x}}$
$= \dfrac{(7 - \sqrt{5x}) (7+ \sqrt{5x)}}{7 - \sqrt{5x}}$
$= 7 + \sqrt{5x}$
6. Simplify:
b) $\dfrac{4 \sqrt[3]{54} - 2\sqrt[3]{250}}{6\sqrt[3]{128}}$
Solution:
Given,
$= \dfrac{4 \sqrt[3]{54} - 2\sqrt[3]{250}}{6\sqrt[3]{128}}$
$= \dfrac{4\sqrt[3]{3^3 × 2} - 2\sqrt[3]{5^3 × 2}}{6\sqrt[3]{4^3 × 2}}$
$= \dfrac{4×3\sqrt[3]{2} - 2×5\sqrt[3]{2}}{6×4\sqrt[3]{2}}$
$= \dfrac{12\sqrt[3]{2} - 10\sqrt[3]{2}}{24\sqrt[3]{2}}$
$= \dfrac{(12-10)\sqrt[3]{2}}{24\sqrt[3]{2}}$
$= \dfrac{2\sqrt[3]{2}}{24 \sqrt[3]{2}}$
$= \dfrac{2}{24} × \sqrt[3]{\dfrac{2}{2}}$
$= \dfrac{1}{12} × \sqrt[3]{1}$
$= \dfrac{1}{12}$
d) $\dfrac{3\sqrt[3]{81} - 3\sqrt[3]{24} + 2\sqrt[3]{275}}{13 \sqrt[3]{192}}$
Solution:
Given,
$= \dfrac{3\sqrt[3]{81} - 3\sqrt[3]{24} + 2\sqrt[3]{275}}{13 \sqrt[3]{192}}$
$= \dfrac{3\sqrt[3]{3^3 × 3} - 3\sqrt[3]{2^3 × 3} + 2\sqrt[3]{5^3×3}}{13
\sqrt[3]{4^3×3}}$
$= \dfrac{3×3 \sqrt[3]{3} - 3×2 \sqrt[3]{3} + 2×5 \sqrt[3]{3}}{13×4
\sqrt[3]{3}}$
$= \dfrac{9 \sqrt[3]{3} - 6\sqrt[3]{3} + 10\sqrt[3]{3}}{52\sqrt[3]{3}}$
$= \dfrac{ (9-6+10) \sqrt[3]{3}}{52 \sqrt[3]{3}}$
$= \dfrac{13 \sqrt[3]{3} }{52 \sqrt[3]{3}}$
$= \dfrac{13}{52} × \sqrt[3]{\dfrac{3}{3}}$
$= \dfrac{1}{4} × 1$
$= \dfrac{1}{4}$
f) $\dfrac{5 \sqrt[3]{81} - 2\sqrt[3]{24}}{2 \sqrt[3]{48} + 3\sqrt[3]{162}}$
Solution:
Given,
$= \dfrac{5 \sqrt[3]{81} - 2\sqrt[3]{24}}{2 \sqrt[3]{48} + 3\sqrt[3]{162}}$
$= \dfrac{5 \sqrt[3]{3^3 × 3} - 2\sqrt[3]{2^3 × 3}}{2 \sqrt[3]{2^3 × 6} +
3\sqrt[3]{3^3×6}}$
$= \dfrac{5 × 3 \sqrt[3]{3} - 2×2 \sqrt[3]{3}}{2×2 \sqrt[3]{6} + 3×3
\sqrt[3]{6}}$
$= \dfrac{15 \sqrt[3]{3} - 4\sqrt[3]{3}}{4 \sqrt[3]{6} + 9\sqrt[3]{6}}$
$= \dfrac{(15-4) \sqrt[3]{3}}{(4+9)\sqrt[3]{6}}$
$= \dfrac{11 \sqrt[3]{3}}{13 \sqrt[3]{6}}$
$= \dfrac{11}{13} × \sqrt[3]{\dfrac{3}{6}}$
$= \dfrac{11}{13} × \sqrt[3]{\dfrac{1}{2}}$
$= \dfrac{11 × \sqrt[3]{1}}{13 × \sqrt[3]{2}}$
$= \dfrac{11}{13 \sqrt[3]{2}}$
Class 10 - Mathematics - vedanta - Algebra - Indices - Simplification Of Surds - Exercise 11.1 - Solutions - Solved Exercises
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.