Here is a list of solutions from Algebra chapter form Vedanta Excel in Mathematics Book 10:
- Exercise 8.1 - HCF
- Exercise 8.2 - LCM
- Exercise 9.1 - Simplification of Rational Expressions
- Exercise 10.1 - Simplification of Indices
- Exercise 10.2 - Exponential Equation of Indices
- Exercise 11.1 - Simplification of Surds
- Exercise 11.2 - Rationalisation of Surds
- Exercise 11.3 - Simple Surd Equations
- Exercise 12.1 - Simultaneous Equation
- Exercise 12.2 - Quadratic Equation
Exercise 11.1
General Section
1. Simplify:
b) 5√3 + 6√3 - √3
Solution:
Given,
= 5√3 + 6√3 - √3
= (5+6-1)√3
= 10√3
d) 8\sqrt[3]{4} - \sqrt[3]{4} - 3\sqrt[3]{4}
Solution:
Given,
= 8\sqrt[3]{4} - \sqrt[3]{4} - 3\sqrt[3]{4}
= (8-1-3) \sqrt[3]{4}
= 4 \sqrt[3]{4}
f) 2\sqrt[4]{6} - \sqrt[4]{6} - 3\sqrt[4]{6}
Solution:
Given,
= 2\sqrt[4]{6} - \sqrt[4]{6} - 3\sqrt[4]{6}
= (2-1-3) \sqrt[4]{6}
= -2 \sqrt[4]{6}
2. Simplify:
b) √6 × √3 × 2√2
Solution:
Given,
= √6 × √3 × 2√2
= 2 \sqrt{6 × 3 × 2}
= 2 \sqrt{36}
= 2 \sqrt{6^2}
= 2 × 6
= 12
c) \sqrt[3]{9} × \sqrt[3]{3} × 3\sqrt[3]{2}
Solution:
Given,
= \sqrt[3]{9} × \sqrt[3]{3} × 3\sqrt[3]{2}
= 3 \sqrt[3]{9×3×2}
= 3 \sqrt[3]{27×2}
= 3 \sqrt[3]{3^3 × 2}
= 3× 3\sqrt[3]{2}
= 9 \sqrt[3]{2}
e) 5 \sqrt[3]{108} ÷ 3\sqrt[3]{2}
Solution:
Given,
= 5\sqrt[3]{108} ÷ 3\sqrt[3]{2}
= \dfrac{5\sqrt[3]{108}}{3\sqrt[3]{2}}
= \dfrac{5}{3} × \sqrt[3]{\dfrac{108}{2}}
= \dfrac{5}{3} × \sqrt[3]{54}
= \dfrac{5}{3} × \sqrt[3]{3^3×2}
= \dfrac{5}{3} × 3 × \sqrt[3]{2}
= 5 \sqrt[3]{2}
3. Simplify:
a) √32 + √8 - √72
Solution:
Given,
= √32 + √8 - √72
= \sqrt{16 × 2} + \sqrt{4 × 2} - \sqrt{36 × 2}
= \sqrt{4^2 × 2} + \sqrt{2^2 × 2} - \sqrt{6^2 × 2}
= 4 √2 + 2√2 - 6√2
= √2 ( 4+2-6)
= √2 (0)
= 0
b) √27 + √75 - 8√3
Solution:
Given,
= √27 + √75 - 8√3
= \sqrt{3^2 × 3} + \sqrt{5^2 × 3} - 8√3
= 3 √3 + 5√3 - 8√3
= (3+5-8)√3
= (0)√3
= 0
d) √12 - √75 + √48
Solution:
Given,
= √12 - √75 + √48
= \sqrt{2^2 × 3} - \sqrt{5^2×3} + \sqrt{4^2 × 3}
= 2√3 - 5√3 + 4√3
= (2-5+4)√3
= √3
f) 5\sqrt[3]{81} - 2\sqrt[3]{24} + \sqrt[3]{375}
Solution:
Given,
= 5\sqrt[3]{81} - 2\sqrt[3]{24} + \sqrt[3]{375}
= 5 \sqrt[3]{3^3 × 3} - 2\sqrt[3]{2^3×3} + \sqrt[3]{5^3×3}
= 5×3 \sqrt[3]{3} - 2×2\sqrt[3]{3} + 5\sqrt[3]{3}
= 15\sqrt[3]{3} - 4\sqrt[3]{3} + 5\sqrt[3]{3}
= (15-4+5)\sqrt[3]{3}
= 16\sqrt[3]{3}
h) 3√2 + \sqrt[4]{2500} - \sqrt[4]{64} + 6√8
Solution:
Given,
= 3√2 + \sqrt[4]{2500} - \sqrt[4]{64} + 6√8
= 3√2 + \sqrt[4]{5^4 × 4} - \sqrt[4]{2^4×4} + 6\sqrt{2^2×2}
= 3√2 + 6\sqrt{2^2 × 2} + \sqrt[4]{5^4×4} - \sqrt[4]{2^4 ×4}
= 3√2 + 6×2√2 + 5\sqrt[4]{4} - 2\sqrt[4]{4}
= (3+12)√2 + (5-2)\sqrt[4]{4}
= 15√2 + 3\sqrt[4]{4}
4. Simplify:
a) (√3 +√2)(√3 -√2)
Solution:
Given,
= (√3+√2)(√3-√2)
= (√3)² - (√2)²
= 3 - 2
= 1
b) (√5 - √3) (√5 + √3)
Solution:
Given,
= (√5 - √3) (√5 + √3)
= (√5)² - (√3)²
= 5 -3
= 2
c) (2√5 + 3√2) (2√5 - 3√2)
Solution:
Given,
= (2√5 + 3√2) (2√5 - 3√2)
= (2√5)² - (3√2)²
= 4×5 - 9×2
= 20 -18
= 2
d) (√2 + √3)²
Solution:
Given,
= (√2 + √3)²
= (√2)² + 2×√2×√3 + (√3)²
= 2 + 2\sqrt{2×3} + 3
= 5 + 2√6
e) (√5 - √3)²
Solution:
Given,
= (√5 - √3)²
= (√5)² - 2×√5×√3 + (√3)²
= 5 - 2\sqrt{5×3} + 3
= 8 - 2\sqrt{15}
= 2(4 - \sqrt{15})
f) \left ( \sqrt{x+a} - \sqrt{x-a} \right )²
Solution:
Given,
= \left ( \sqrt{x+a} - \sqrt{x-a} \right )²
= (\sqrt{x+a} )² - 2 × \sqrt{x+a} × \sqrt{x-a} + ( \sqrt{x-a} )²
= (x+a) - 2 × \sqrt{(x+a)(x-a)} + (x-a)
= x+a+x-a - 2\sqrt{x²-a²}
= 2x - 2\sqrt{x²-a²}
= 2(x -\sqrt{x²-a²}
g) (2√2 - √3) (3√2 + √3)
Solution:
Given,
= (2√2 - √3) (3√2 +√3)
= 2√2 (3√2 + √3) - √3(3√2+√3)
= 6(√2×√2) + 2(√2×√3) -3(√2×√3) - (√3×√3)
= 6×2 + 2√6 - 3√6 -3
= 12 -3 +(2-3)√6
= 9 - √6
h) (3√5 - 4√2) (2√5 + 2√3)
Solution:
Given,
= (3√5 - 4√2) (2√5 + 2√3)
= 3√5 (2√5 +2√3) - 4√2(2√5 +2√3)
= 6(√5×√5) + 6(√5×√3) -8(√2×√5) + 8(√2×√3)
= 6×5 + 6\sqrt{15} - 8\sqrt{10} + 8√6
= 30 + 6\sqrt{15} - 8\sqrt{10} + 8√6
5. Simplify:
b) \dfrac{\sqrt{x²-9}}{\sqrt{x-3}}
Solution:
Given,
= \dfrac{\sqrt{x²-9}}{\sqrt{x-3}}
= \dfrac{\sqrt{(x)²-(3)³}}{\sqrt{x-3}}
= \dfrac{\sqrt{(x+3)(x-3)}}{\sqrt{x-3}}
= \dfrac{\sqrt{x+3} × \sqrt{x-3}}{\sqrt{x-3}}
= \sqrt{x+3}
d) \dfrac{x-4}{√x+2}
Solution:
Given,
= \dfrac{x-4}{√x +2}
= \dfrac{(√x)² -2²}{√x +2}
= \dfrac{(√x -2) (√x +2)}{√x +2}
= √x -2
f) \dfrac{49-5x}{7-\sqrt{5x}}
Solution:
Given,
= \dfrac{49-5x}{7- \sqrt{5x}}
= \dfrac{(7)² - (\sqrt{5x})²}{7 - \sqrt{5x}}
= \dfrac{(7 - \sqrt{5x}) (7+ \sqrt{5x)}}{7 - \sqrt{5x}}
= 7 + \sqrt{5x}
6. Simplify:
b) \dfrac{4 \sqrt[3]{54} - 2\sqrt[3]{250}}{6\sqrt[3]{128}}
Solution:
Given,
= \dfrac{4 \sqrt[3]{54} - 2\sqrt[3]{250}}{6\sqrt[3]{128}}
= \dfrac{4\sqrt[3]{3^3 × 2} - 2\sqrt[3]{5^3 × 2}}{6\sqrt[3]{4^3 × 2}}
= \dfrac{4×3\sqrt[3]{2} - 2×5\sqrt[3]{2}}{6×4\sqrt[3]{2}}
= \dfrac{12\sqrt[3]{2} - 10\sqrt[3]{2}}{24\sqrt[3]{2}}
= \dfrac{(12-10)\sqrt[3]{2}}{24\sqrt[3]{2}}
= \dfrac{2\sqrt[3]{2}}{24 \sqrt[3]{2}}
= \dfrac{2}{24} × \sqrt[3]{\dfrac{2}{2}}
= \dfrac{1}{12} × \sqrt[3]{1}
= \dfrac{1}{12}
d) \dfrac{3\sqrt[3]{81} - 3\sqrt[3]{24} + 2\sqrt[3]{275}}{13 \sqrt[3]{192}}
Solution:
Given,
= \dfrac{3\sqrt[3]{81} - 3\sqrt[3]{24} + 2\sqrt[3]{275}}{13 \sqrt[3]{192}}
= \dfrac{3\sqrt[3]{3^3 × 3} - 3\sqrt[3]{2^3 × 3} + 2\sqrt[3]{5^3×3}}{13
\sqrt[3]{4^3×3}}
= \dfrac{3×3 \sqrt[3]{3} - 3×2 \sqrt[3]{3} + 2×5 \sqrt[3]{3}}{13×4
\sqrt[3]{3}}
= \dfrac{9 \sqrt[3]{3} - 6\sqrt[3]{3} + 10\sqrt[3]{3}}{52\sqrt[3]{3}}
= \dfrac{ (9-6+10) \sqrt[3]{3}}{52 \sqrt[3]{3}}
= \dfrac{13 \sqrt[3]{3} }{52 \sqrt[3]{3}}
= \dfrac{13}{52} × \sqrt[3]{\dfrac{3}{3}}
= \dfrac{1}{4} × 1
= \dfrac{1}{4}
f) \dfrac{5 \sqrt[3]{81} - 2\sqrt[3]{24}}{2 \sqrt[3]{48} + 3\sqrt[3]{162}}
Solution:
Given,
= \dfrac{5 \sqrt[3]{81} - 2\sqrt[3]{24}}{2 \sqrt[3]{48} + 3\sqrt[3]{162}}
= \dfrac{5 \sqrt[3]{3^3 × 3} - 2\sqrt[3]{2^3 × 3}}{2 \sqrt[3]{2^3 × 6} +
3\sqrt[3]{3^3×6}}
= \dfrac{5 × 3 \sqrt[3]{3} - 2×2 \sqrt[3]{3}}{2×2 \sqrt[3]{6} + 3×3
\sqrt[3]{6}}
= \dfrac{15 \sqrt[3]{3} - 4\sqrt[3]{3}}{4 \sqrt[3]{6} + 9\sqrt[3]{6}}
= \dfrac{(15-4) \sqrt[3]{3}}{(4+9)\sqrt[3]{6}}
= \dfrac{11 \sqrt[3]{3}}{13 \sqrt[3]{6}}
= \dfrac{11}{13} × \sqrt[3]{\dfrac{3}{6}}
= \dfrac{11}{13} × \sqrt[3]{\dfrac{1}{2}}
= \dfrac{11 × \sqrt[3]{1}}{13 × \sqrt[3]{2}}
= \dfrac{11}{13 \sqrt[3]{2}}
Class 10 - Mathematics - vedanta - Algebra - Indices - Simplification Of Surds - Exercise 11.1 - Solutions - Solved Exercises
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.