Trigonometry is an important topic in Optional Mathematics. It is useful for the students to get higher grades in examinations. It is the branch of mathematics that deals with the relation between the sides of a right-angled triangle. You can check these solutions to help yourself in Trigonometry.

1. If $3 + tan \theta = sec^2 \theta$, find the value of $tan \theta$. 


2. If $tanA = \dfrac{x}{y}$, find the value of $\dfrac{xsinA - ycosA}{xsinA + ycosA}$.  


3. If $\theta = 60°$, verify that: $cos3\theta = 4cos^3 \theta - 3cos\theta$. 


4. Prove that: $\dfrac{tan x}{secx -1} - \dfrac{sinx}{1 + cosx} = 2cotx$. 


5. Prove: $\dfrac{1}{1 - sinx} - \dfrac{1}{1 + sinx} = 2sinx.sec^2x$. 


6. If $\pi = 180°$, find the value of $tan \frac{\pi}{3}.sin\frac{\pi}{6} + sin\frac{\pi}{4}.cos\frac{\pi}{2} + cos\frac{\pi}{2}.sin\frac{\pi}{3}$. 


7. Prove: $\dfrac{1 - sin \theta}{cos \theta} = \dfrac{1}{sec \theta + tan \theta}$.


8. Prove: $\dfrac{1 + sin \theta}{cos \theta} = \dfrac{1}{sec \theta - tan \theta}$. 


9. If $\pi = 180°$, verify that: $tan^2 \frac{\pi}{3} - cos^2\frac{\pi}{3} = \dfrac{sin^2 \frac{\pi}{3} - cos^4 \frac{\pi}{3}}{cos^2 \frac{\pi}{3}}$.


10. One angle of a triangle is 72° and rest two is in the ratio 1:3. Find all the angles in grade.

About this page

Class 8 - Trigonometry Solutions for BLE (Basic Level Examination) is a collection of the solutions related to trigonometry chapter for Nepal's BLE appearing students.